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Abstract—An approximation technique, widely used by Meksyn for finding solutions in terms of
asymptotic expansions to problems of flow in boundary layers, is extended to free convection flows,
and applied to the classical problem of free convection at a uniformly heated vertical wall in fluid
otherwise at rest, and to the rather less known problems of combined free and forced convection at a
vertical wall in a fluid having a vertical velocity at a large distance from the wall. It is found that, in
the problems considered, the first three terms of the asymptotic series provide a good approximation
to known results, and since in this case the essential computational problem is that of finding the least
root of a quartic equation in which the Prandtl number appears as a parameter, the method is a good
deal more easy to use and of more general application than those used by previous workers on these
problems. Other problems of free convection, or combined free and forced convection, in which
similarity transformations may be used are at once amenable to the same technique.

NOMENCLATURE

x,y, co-ordinates along and normal to the
wall;

£, m,  similarity co-ordinates;

u, v,  vertical and horizontal velocity com-
ponents;

T, absolute temperature ;

i, stream function;

F(n), non-dimensionalized temperature in
similarity co-ordinates;

f(m), non-dimensionalized stream function
in similarity co-ordinates;

g acceleration due to gravity;

v, kinematic viscosity;

B, coefficient of thermal expansion;

k, thermal conductivity;

o, Prandtl number;

To(x), temperature of ambient fluid;

Ti(x), temperature of wall;

AT(x), temperature difference between wall
and ambient fluid;

Us(x), mainstream velocity;

Nu, Nusselt number;

Gr, Grashof number;

Re, Reynolds number.

* Lecturer in Applied Mathematics,

INTRODUCTION

THE problem of free convection at a heated
vertical wall in a fluid otherwise at rest has
stimulated a good deal of work, both experi-
mental and theoretical, since the early papers of
Schmidt and Beckmann [1]. Extensive discussion
of the wide physical importance of this type of
problem appears elsewhere, for example Ostrach
2], and is therefore not reproduced here.
Notable contributions towards a theoretical
understanding of the problem have come from
Saunders [3], Schuh [4], Ostrach [2], Sparrow
and Gregg [5] and Reeves and Kippenham [6],
whilst Lorenz [7], Eckert and Soehngen [8] and
Scherberg [9] are amongst those who have
carried out detailed experimental work. All
analytical approaches have been based on
similarity transformations of the equations of
motion and energy, as have most purely
numerical approaches, and the process of solu-
tion has usually been rather tedious.

The problem of convection in a boundary
layer at a heated vertical wall in a fluid which
has a vertical velocity at a large distance from
the wall has received much less attention how-
ever. The mostimportant theoretical contribution
to this problem of combined free and forced
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convection has come from Sparrow, Eichhorn
and Gregg [10], and we follow their precedent
here in seeking similarity solutions of the
equations of motion and energy. The existence
of similarity solutions depends on a relationship
between the variation of wall temperature and of
free stream velocity, thus limiting the range of
problems covered by the analysis, and in fact
excluding the case of uniform wall temperature
and uniform stream velocity. This particular
case has, however, received some attention in the
past, notably from Tanaev [11], Acrivos [12]
and Sparrow and Gregg [13]. In this paper a
method of asymptotic expansion, widely
developed by Meksyn [14], and fully described
and discussed by him, is used to find approximate
solutions to two problems of combined free and
forced convection, and to the classical problem
of pure free convection at a uniformly heated
vertical wall. This latter problem provides a
useful vehicle for the development of the tech-
nique, and also for the assessment of its accuracy.

1. THE EQUATIONS OF MOTION AND
ENERGY
The equations defining the problem are the
equation of motion in the x-direction, x being
measured vertically along the wall from the
bottom edge, which with the usual boundary
layer approximation is

ou du I ¢p dPu
L o, T
u ox ' t oy p X i ay? -+ 88( To)

(L.1)

where T, == T,(x) is the temperature of the fluid
at height x at a large distance from the wall; the
equation of heat transfer, again with the usual
boundary-layer simplifications

aT oT T
v =k 1.2
" ox ! cy cy? (1.2)
and the equation of continuity
cu A ;
ot =0 (1.3)
cx oy

As is customary in boundary-layer theory we
replace the pressure gradient in (1.1) by its value
outside the layer, and neglect the variation of p.
Thus we have

. BRINDLEY

b cp, clig
. Ji .
po FX Oy

and we can rewrite (1.1) in the form

cu  u Uy Py .
U, - - Uy o 4w - = ep(l
ox 3% X ryzo

We wish to examine the possibility of finding
similarity solutions to (1.2), (1.3) and (1.4), and
is is convenient to introduce a stream function
J(x, ), such that

o cafs

u=,, ==

, . (1.5
ay [&Ae

and then make a transformation of variables of
the form

- Cy . P, )

= =G TED AT HG
i, T(x.y) - Tolx) o
¢, 1) T A (1.6

where G(x) and H(x) are functions of x only, and
T(Ax) is the temperature difference between the
heated surface and the fluid at a large distance
from the surface at the given value of x. The form
of the functions G(x), H(x), AT(x) in order that
equations (1.2)-(1.4) should become ordinary
differential equations in % is readily found (sec.
for example, Yang [15]), and in particular the
only functions AT(x) admitting of a similarity
solution are of the form AT(x) = Ax™, and Bes".
In the case AT(x) oc x™ we must have U, « 17,
where 2n - | = m, and in the case AT(x) ¢ e**
we must have U, o¢ et*. Thus the existence of
similarity solutions of the equations in the case
of combined forced and free convection is
dependent on a quite intimate relationship
between the forms of variation of the mainstream
velocity and the temperature difference, and the
number of configurations which can be investi-
gated by this method is thereby limited. However.
a number of interesting cases are accessible, and
some of these we consider later.

2, THE CONSTANT WALL TEMPERATURE
PROBLEM WITH NO MAINSTREAM VELOCITY

In order to make a comparison with known
results it is convenient to consider first the
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particular case in which AT(x) is constant and
Ul(x) is zero. As mentioned earlier, this problem
has been extensively studied, both theoretically
and experimentally, and so provides a useful
test of the accuracy of the method.
Following Schmidt and Beckmann [I] we
write
1/4
o () 2 a2

4.2 X174

G
Y(x, y) = 4v Ax¥ f (). T(x,y) — To = ATF(n)

2.1)

and (1.1) and (1.2) simplify to
[ =2+ F=0 22
F” + 3ofF’ = 0. 2.3)

In order to obtain solutions of (2.2) and (2.3)
we make use of the fact that f and F’ are large
only in a narrow region close to the wall; we can
therefore seek asymptotic solutions of the equa-
tions in order to employ the boundary conditions
at infinity. To use the boundary conditions at

= 0 we first assume solutions for f and F in
the form

f= § arn’, F= § arn'. 2.9
r=0

r=0

Then the boundary conditions f=f'=0,
F =1 at » = 0 show that

do=a,=0, ag=1. 2.5)

Hence

f=Saq, F=1+3ay. (26
r=32 1

If we substitute these expressions (2.6) in (2.2)
and (2.3) we find that

éarr(r— 1)(r—2)17r_3+3§ar"]r§arr(r_ 1)
2 2
7t 2 a4 L+ Sargr =0 27)
2 1

Sarrr— D2+ 30N arn S apryrl=
2 2 2
(2.8)

whence, equating to zero the coefficients of
corresponding powers of 7
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n0{6a3+1=0, a= — ¢

2a, = 0. a, = 0.
1 24a, + o, =0, a, = — 24a,.
T Y 6ay = 0, ag = 0.

1
60a; + 647 — 8a3 + 0, =0, a; = 30 ai.

7 1
12a, + 30ay0;, =0, ag= —

T Gy,

i
== 60’ a2a4.
120ag + a3 =0, as = 0.
3
7 {20&5 +3ca0y =0, a5=— 37 da etc.
So we can write
f=a 712—1773 + agnt + . am
2 6 4 30 72
1 o
~ G0y 2“1+3~5 N+ ...
SeX)

3
F=1 ~—24a47]+60(12a41]4— 3(7(147]5

12

-+ 5 ca;n®. .. ]
where all the coefficients may be expressed in
terms of the two constants a, and a, which are
found by using the boundary conditions at
infinity. We substitute in (2.2) and (2.3) the above
expressions for f, f” and F in order to obtain
linear equations for f” and F’; writing » and p
for the series expressions for fand F in (2.9) we
have

f 4 3uf” =20 — p
F’ + 30wF' =0

(2.10)
2.11)
which may be integrated at once to give
J7 = exp [— 3[a(n)]
[f5 exp [Bfew(m)] 2w — p)dy + C]
F’ = D exp [ 3ofa(n)] (2.12)

where C and D are constants,
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To complete the solution we have to evaluate
the integrals

[7== Jexp [ 3fw(n)] ¢(n) d.
F == 1 Dfexp [~ 3ofwm]dy (2.13)

where
~ p)ydn + C. (2.14)
lntegrating (2.9) term by term we have

3

. . 1
() dn = ayn* — 8”’4 5“4") “f

3

aﬁ 7"

o\
g % (21 33) ¥ 4. . .=75ay (2.15)
and we can now replace n by = as the independent
variable in the expression (2.13) forf’, viz.

J= femglndy = e <f>(77) L dr. (216)

Since () starts with %3, when we express 7 in
terms of 7 we can write

e Anz

o \’ o

e 1/71 —{— I

which is valid for sufficiently small values of 7.
Thus

FU3(m 1)

(2.17)

x|
dn = 3 . Ay P02 dr

2.18
m—=0 3 ( )

from which it follows that

. o
fj;-i’l §> f‘: —midn  (2.19)
1 3

T1/3(m+1) 3

the first integral being taken once round a cir-
cuit containing % == 0 in the »-plane, and the
second integral being taken three times round a
circuit containing r == 0 in the =-plane.
It follows at once that A, is the coefficient of
n-1in the expansion of 7-V#@+1 in ascending
o0
powers of 7; if we write fw(n)dnp=171* X can”
n-0
- 7, we have

=3l — nw(mf%l) (Co + om + .. ')—~1/:s (m i 1)

(2.20)

whence A, is the coefficient of »™ in the expres-
sion (co -+ ¢ + . . )7TVR@mAD,
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In fact we have

! 3 |

T 73 ((l.; - Sosagm? e e ds
e g st g ,
2.15)
s0 A,y is the coefficient of » in the expression
| 3 b, a
as § o 5 a, 7] - 6() asm” - % Uyl 4
RIS ERY
‘ .
(21 35) (2.21)

We consider next the integral solution for

[f(m), given by

f7 o= fexp [ 3fa(ld(n)dn.  (2.13)

Transforming to the new variable = we have
f'/( ) . ! T q_l)( d‘,/ i+ (2.22
VAUV “C ‘n)dr(/' (2.22)
and if we now let

B(n) = ¥ by 7, and </>(77)

n 1)

2/ )
- 3 \ d T 3
m (\

(2.2

where the expansion starts with +** because 7
starts with =%/3, we find, by a procudure similar
to that above, that

=l by (]

T

o
6wi§> g(n) 7 N Ay (2.24)
1

where the first integral is taken threc times round
a circuit in the 7-plane containing = = 0, and the
second integral is taken once round a circuit in
the 7-plane containing » = 0. Hence it follows
that d,, is equal to 1/3 of the coefficient of # !
in the expansion in ascending powers of » of the
expression ¢(n) = V301 ie. 1/3 of the coefti-
cient of 5™ in the expression

LYY (B - by
Dy M L

(Co = Cym 7/2 +

The coefficients b, are most easily found by
using (2.12), viz. f(n) = €7 &(n), and substitut-
ing for /7, 7 and é(y) from (2.9), (2.15), and
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(2.23) respectively. Then the equating of coeffi-
cients of powers of % gives the by, in terms of a,
and a,. In fact the substitution gives

2
(2az~n+ Rayp* +387* + .. )

2 7

T 3

:bo+b17]+b27]2+- .« (2.25)

where

3 1 4 3 5 1 2 .6
T=a7" — g +§a47] —{-6—00277 +...2.15
Thus

b0:2a25b1:_ ]5

w! e

bz = 12(14, b3 - a%s

5
by=— i% etc.

and dp, is 1/3 of the coefficient of »™ in the
expression

1 3 —U3(m+1)
(‘12 —877‘!‘504772-{----)

Qay, — 9+ 12a,7* 4+ ...) (2.26)
From (2.23) and (2.24) we obtain

r e gy dy = 3 d,nr("L;Ll) 2.27)

0 m=0

and to find the value of the integral from 0 to =
we use the incomplete gamma function.

The actual values of the first few coefficients
of the Ay, and d)y series of (2.17) and (2.23) are as
follows.

N

Ay =a7¥3, A, a; s,

12

3a 1

S Y e ST
4= ( 5a2+64a§)

a, Ta, 35
PRV Y: ¥ B e I B
Ay =9 ( 45 30a§+81-128ag)
1 84 1l q
5a 144

6160 1

1944 (8ay)t| ©

tc.

( (2.28)
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2 5 L (2.28)
do =303 dy=—as?h,
5 1
— g1 ] __ .
b =a (18“4 32a4>
1 79 77 a,
— _ag—43 12 . =
ds =3 [30 %30 4
or 1
T 81 (8 |
1 19 127 a2 49 a
_ -3 2, =l M4, T4
d=34 [ 5" B e TR a
55 1

The integral
F=1+ D [exp[— 3ofw(y)]

may be evaluated by a similar procedure, leading
to a second equation, from the boundary con-
dition on F at o, for the unknown parameters
a, and a,. Transforming to the new variable ,
as above, we have

(2.13)

F) =1+ D [e-or gg dr,  (2.30)

whence, writing

© A
=3 "

" U3 mA)
m=0 M T 1

where the A4 are given in (2.28) above, we have

F(o)=1+ D % %Amp(m_?,tl) =13 (m+1)

(2.31)

The value of D is obtainable from the condition
that 7/ = —24a, at n = 0, hence D = —24a,,
and the value of F at an interior point of the
range is given by the incomplete gamma function.

The conditions F =0 =f" at 5 = o now
give us a pair of algebraic equations from which
to determine a, and a,. In the case where the
series (2.27) and (2.31) are divergent we may, as
Meksyn [14] has pointed out, make them formally
convergent by introducing an arbitrary small
parameter e, and writing in (2.23) and (2.30)
exp (— 7¢73) and exp (— ore™3), instead of e~
and e~7 respectively. The expansions (2.27) and
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(2.31) are then divergent for ¢ = I, but can be
summed by applying Euler’s transformation to
the parameter e.

3. COMBINED FREE AND FORCED CON-

VECTION: CONSTANT WALL TEMPERATURE

We next consider the problem of frec con-
vection at a vertical wall in the presence of a
vertical mainstream velocity: the difference
between wall temperature and temperature of
the ambient fluid being constant, and the main-
stream velocity varying as x/2 in accordance with
the conditions of Section 1. Writing A7(x)
Ty - T, and supposing

{ ’;r) Uxl= (3 { )

where 75 1s the wall temperature and {/ a con-
stant, we make the transformations

‘ 1 (UVYE o P, y)
E==x, n= b} ( ,:) e f(En). = Z(T/V)Lex:;;;
. T(x, - T, -
(& : . 32
(€ T, T, (3.2}

The assumption that f/ and F are functions of
only then leads us to the equations

AT To)

[ a2 S
(3.3)
F b 3ofF 0. (3.4)

The coefficient of F in equation (3.3). which
measures the relative importance of the free
convection, is effectively the ratio of a Grashof
number to square of Reynolds number.

In finding solutions of the equations (3.3) and
(3.4) we follow fairly closely the working of
Section 2. Assuming a series solution for fand £,
and applying the boundary conditions at n == 0:
ie f=f =0.F=1;wefind

o
f= S arn

Foe 4+ 2 ar . (3.5)

2

Substituting the expressions (3.5) into equa-
tions (3.3) and (3.4) we have

Narrtr o D(r 2)yyrd

H

!

SN gyt X arrtr Dyt U aryt WY

5

S22 A a0 (363
i
3 aprir Doy 24 3a Yy Y ary bl
2 2 |
(3.7}
writing
4gp(1, [ .
A
it 1.8)

and equating to zero the
powers of n in (3.6) and (3

[ 6ay, -2 - A -0,
7/0 \T

|

P 2a, -0,

.

P 24ay - Aay = 0,
,7;.‘ ‘);

| by o Ol

60as i 6ai - Bag

Ul 12ay -+~ 3oa,a, == 0,

]

[ 210a, + 10aya, + Au

1

coefficients of various
7y

2 !
s
i 6
it {
24a,
"
A
Ly ¥
Ay 0 ay l.() al
j
£} ,il(y (I,:u i

6oy,
A

120a; + 18aza, +- 6aya,  28a4u, = Aay - 0,

| Wy -+ 302ayn, i dzuy) - O

dy - 0
Jodagu
h 20
32 = Ao,
g U

300, + 30(3ay05 - 2a30s + @gop) = 0

[
S oy ('771 -4 25/\).

e

: 12
0%t &y ag, ete

o
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Thus we can write

242 1
=t — —=ntan'+ g’

~~a2a l_*__o'_. 7_|_
a1 T3sA) T T

+(3.9)
24a, boaa, ,
F=l="ynt—
3(2+ A)

s aa4n+5)\ ”w+...

J

whence, substituting in (3.3) and (3.4) for f, f*
and F, and writing & and p respectively for the
series representations (2.5) of f* and F, we find

f7 436 =26"—2— Ap (3.10)
F” 4 30aF =0 (3.11)
which may be integrated to give
f = exp[— 3[a@m)] {fJ exp [3fda(n)]
@a? —2 — Ap)dn + C}
F' = Dexp [— 3ofa(n)]

where C and D are constants.
To complete the solution we must now evaluate
the integrals

f' = Jexp [~ 3[a(n) dn] ¢(n) dv,
F=1+ D [exp[— 3cfa(y) dn]dy (3.13)
where we have written

¢(n) = [ exp [3fa(n) dn]
(232 —2 — Ap)dn + C. (3.14)

(3.12)

The series representation &(y) for f given by
(3.9) may be integrated term by term to give

24+ A

_ 1
3falndn=a,7*— —g— '+ gaan’ + g a3 n°

3 1 a .
— gt ﬁ+3—5—)‘)77 + o

and it is now possible to replace o by = as the
independent variable in the expression (3.13)
for 17, viz.

= 7, say (3.15)

Jr=eln)dn = fe- ’95(77) d‘r (3.16)
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For small values of = we can express n as a power
series in 7,

Am
om + 1

F1/3(m+1)

3.17

=3
it
n b8

where the coefficient Ay, is the coefficient of »™
in the expression

242
[az— 5 n+ am +60
J1/3(m+1)

3 o s
0204(21+3§\)7} +
Moreover, if

H(n) = X bun?, and é(n) == 7723 Y dy T3
n=0 m=0

(3.18)

it follows, as in Section 2, that the coefficient
dp is equal to 1/3 of the coefficient of ™ in the
expression

24 A
(aZ - 8 n + (147) +60a27]
_+._

and we can thus express the integral (2.16) in
the form of a series of gamma functions.

The coefficients b, are obtained from the
equation

)T (b + by by )

"=eT ¢(n)
i.e.bo+b1n+...:

(3.12)

o e

[2&2—(2—{— A+ 12a,7? —l— az'q

1
6%04( +50)\) 7+ . }

and
24 A 3
eT:l+a2n3~( :‘)774‘{“5“4")5
31
+600277 +.

so it follows that
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by =2dy, by= - (2-+X), by = 12u,
8 5
by = 3 @ b, 4(2 A)d,.
aytty by (20 AP .
by 5 (.56 5/\—/)»-— g etc. (3.19)

The coefficients 4,, and d,, of (3.17) and (3.18)
may now be written down as follows,

Ay a3 A l2(2 - Na, B3,
3a, (20 A2 f
e i . i . !
Ay = 4 [ 5 a, 64a? ] § ”
’ ) L (3.20)
PR a, 72 - A) ay ,
2 h 45 0 &
B[R
Cosiensa PO
2 5 o an )
da e 3a:,2_ }, ({1 = 18 (2 /\)(12 “'3, E
, 18 (2 N
O I R
' L(3.21
R R W T B
dy =5 a; %3 | —=a% - - :
3 - . 45 - D (l‘l
o 2+ W] |
4 (3a,)? , , etc. {;

The integral (3.16) may now be expressed as a
series of gamma functions as follows.

\;: dy T, (‘{n 2 l\)

w0

: . b
I~ em;s(n);;d,-
(3.22)

and in the case of the second integral of (3.13),
namely

Fe 1+ D fexp [ 3ofa(n)]dn.

we again change the variable to =, and write

d.
Fool-nDyf e 'dr (3.23)
: dr

whence, writing
7 \ Am LB AL

woom E

J. BRINDLEY

where the A4, are given in {3.20) above. we have

!

iy
3 .

< T L
DY Ay W ( S 3

)

F(n) b

The condition on F'(n)aty 0 deducible from
cquation (3.9), namely F(0) 24a, /A means
that we have D 24a,/A; the conditions
=0, /71 at vy 7 then provide two
cquations from which to determine @, and a,.

In the case in which A is large, which mcans
that the natural convection is more important
than the forced convection, it is convenient to
use a different transformation of variables.
Instead of (3.2) we write

N I
I A L
- dix.
N C R T
F(& ) ]*(;,:! " .!v”f 73,25

and n this case the equations of momentum and
energy become

L=
AR § A § AL - 1}
A s T
{3.26)
F7oo 3efF -0, (3.27)
Thus if we write

{2 -

i 3.28)

SRV VR
so that p -~ 4/A, then all the analysis above
applies, provided that we write 1/2 p -1 1 for
2 -+ A, and remove the factor 1/A from the «,.

However the boundary condition at = on f
is now changed somewhat, for we have, at 7.
apfey — Ux12,

Thus
4 [g@('f@ - T{z?'] Y
42 .
o (BT Tl
o 42 {
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Uxv2  (3.29)

2 [gf(Ty — T2 x2S =

and hence
U

1= BT, — TR

The condition at oo on Fis of course F = 0 as
above.

= 1/2+/p. (3.30)

4. COMBINED FREE AND FORCED TRANSFER:
UNIFORM HEAT FLUX

The rate at which heat is transmitted from the
wall to the fluid is, according to Fourier’s law,
—T . By uniform heat flux
0y Jy=o
we mean that this rate of heat transfer is inde-
pendent of x, and in order that this should be
so we require that AT(x) oc x¥/® and U, oc x¥/5,
Again, as in Section 3, we choose two separate
similarity transformations, according as the
forced convection or the free convection is
regarded as dominant. In the former case we
write

proportional to

U 1/2 z//(x, y)
ffx’"ﬁ{aj e 60 =G gy

T(x, y)

—T,
F(&,m) = o7, 4.1

which gives equations

568(T, — T,)

2 L
¥ U

F+3=0
4.2)
F + o(4fF — f'F) = 0. 4.3)

We proceed with the solutions of equations
(4.2) and (4.3) in the manner developed in
Section 2, and eventually express both /" and F
as a series of gamma functions, viz.

£ A

=S dunT, (f’i’i—l) (4.9)
m=0 3
F=1+3A4,T (m ;_ 1) ~1/3(m +1)
m=0
(4.5)

where 7(n) is defined in a similar manner to
that in Section 3.
In this case the d,, and the 4, are as follows.
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4 \-U3 4 \-233 4
Ao = (3 az) , A= (g az) 124,
o (fa ) e, G
2= (§ “2) [ 5q, " 64a} L
4.6)
4\ 2 I3+ N a,
“:GQ [*ﬁ%"m‘g
35(3 + A)2
81-128@‘] |
2 (4 \s )
do = 3% (3 az)
5 4 —2/3
4= 56+ (5a)
L[4 NI (B |
dy = (3 02) [?ar} - 3272‘]9 r(4.7)
4\ [56
&= (30) [ +a0 -0
91 (3 + A
81 (Ba ] ]
where
| ST~ T)
w10,

and the conditions F(o0) = 0, f’(c0) = 1 provide
two equations for g, and a,.

If, on the other hand, the free convection is to
be regarded as dominant, an appropriate trans-
formation of variables is

18 T TO) 1/4 W

e P

_ (x, y)x—v5 |
St ) = [g@(T To)] L4.8)

T |

|

R =T G2 T J

5. RESULTS AND DISCUSSIONS
Some numerical results based on the analysis
of Sections 2, 3 and 4 have been computed on
the University of Leeds Pegasus computer, and
a selection of these results is presented here. In
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all cases the computations have been based on
the first three terms of the appropriate gamma
function expansion for the temperature and
stream function. Numerical results for the case
of free convection at a vertical plate at uniform
temperature are summarized in Figs. | and 2,

Fi. 1. Representative velocity profiles for varying
values of ¢ in the pure free convection case.

=

QBA,C] 4 P

aps L

FiG. 2. Representative temperature profiles for vary-
ing values of ¢ in the pure free convection case.
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and a direct comparison between the results
obtained above for o ==0-733, and those
obtained by Schmidtand Beckmann [1], Saunders
[3] and Squire [16], illustrated in Fig. 3, shows

)
T
|

1

e Our results N

Schmidt and Beckrmonn } - ) \\

Saunders AN \

- Squire R "%,
" B

VQ,‘-?LU B

EPRS

Fic. 3. Comparison of the velocity profile obtained

in this paper with those obtained by earlier workers
(g == 0-733).

an agreement good enough to provide con-
fidence in the accuracy of the approximation (at
least for values of ¢ not too small compared with

unity).
The rate of heat transfer from the plate is
given by
,&,']‘«
SRR .
q ( (’\'.1" ) oo

which, using equations (2.1) and the numercial
result obtained for F'(0) is, for o == (-733.

gﬁﬁf‘)“\

and hence the mean Nusselt number for a plate
of height 7 is

‘ 'IQIAT‘ 14

Nu = 0499 (gﬁ )

2
o

this value differs from that obtained numerically
by Ostrach [2] by a margin of about 4 per cent.
and in Table 1 is presented a comparison
between our results and those of Ostrach for
various values of o.
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Table 1. Values of temperature gradient and Nusselt number at the vertical wall,
for the case of constant temperature

' \
o ‘\ 001 0733 7 10 100 1000
Our—F’(0) ‘ 0-051 0-529 1-168 1-300 2:346 3-941
Ostrach’s—H’(0) i 0-081 0-508 — 1-169 2-191 3-966
|
— 174 .
Nu/[gﬂTl2 —Ti)] ' } 0-485 0499 1-100 1227 2-200 3-60
14
l

The measure of agreement obtained between
the results presented here, and numerical results
obtained by other investigators suggests that
this method of approximation is a very useful
one in free convection problems. In our case,
where three terms of the series expansions are
used, the essential computational problem con-
sists of finding the smallest solution of a quantic
equation in which the Prandtl number appears as
a parameter. It is thus a matter of little labour
to find solutions for any o, but it should be noted
that the method does not work at all well for
very small Prandtl number because of the
presence of factors of the form ¢—1/3(m+) (1 an
integer) in the expansions for the temperature
field. Physically this means that the temperature
boundary layer is much thicker than the velocity
boundary layer, and so the polynomial expres-
sion for the velocity is used in the equations over
a much greater range of % than that for which it
is an accurate approximation.

Numerical results for the case of combined
free and forced convection at a vertical wall
kept at uniform temperature are summarized in
Figs. 4 and 5. Again the essential computational
problem is the finding of the first root of a
quartic equation, which contains as parameters
the Prandtl number ¢ and the quantity u (or A),
which is effectively of the form Re?/Gr, where
Re is the Reynolds number, and Gr the Grashof
number appropriate to the problem.

The shear stress at the wall is

(5)
oy y:o’

and the heat transfer
aT)
oy Jy-o

k(-

v

P

it is convenient to measure these in terms of
coefficients defined as follows, the Nusselt
oT

number
x PR
( ay ) Y=0

Ny = T, =T,

and the friction coefficient

v (314)
AU
1/2pU2
5 n
6r _
/ E'eg =100
4
50
3
S 20
®
~
2
10
5
/7
, el
0
o] 05 \ 1+0 1-8
nEHE L

FiG. 4. Representative velocity profiles for the uni-
form wall temperature case (¢ = 0-733).
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F16. 5. Representative temperature profiles for the
nrifaermn rall tarmrmoeatiien ~rnen § e Y "}’)?\
AEFIEINAT LHE VV‘\I] \bl]}}}\-lalul\« \r(l\\, T T AL AN RS S

Variations of these coefficients for varying
Gr/Re* are shown in Table 2, all the figures being
based on a Prandtl number of 0-733. In order to

facilitate comnarican with the reculte af Snoreaw
1alliad il LOMPparison With 1 YE5UI 01 SPaiTow.

Eichhorn and Gregg [13], the quantities tabu-
lated are 2cyRe’? and 2NuRe -2, Agreement is
on the whole very good, but our values of heat
transfer are systematically higher by some 7 per
cent, and for small values of Gr/Re® the difference
in the skin friction figures runs to 1214 per cent.

Some results have also been prepared for the
uniform heat flux case, this time for both ¢ =
0-733 and o = 7. These results are presented in
Figs. 6 and 7 and Table 3, and again agreement

BRINDLEY

, Rpm‘emm ative velocity mnhlr\ for the uni-

form heat flux case {¢ = (-733).

with Sparrow, Eichhorn and Gregg is very good
where a direct comparison is possible.

gagma anmavant that
3ECMS 4apparéni inai

tih
tile

cnneluginn

In CONCLUSION, it
symptotic methods developed by Meksyn and
used by him in a variety of boundary-layer

Table 2 Heat nansfm am[ shem stress coeﬁ?uemsjm case ()f mnsmm wal! rempemlme (e == 0-733)
Gr/Re? 100 50 20 10 s 2 i 023 QO
2¢sRet® : 120-76 74-70 37-56 23-88 15-41 9330 6942 4928 4-564 4196
ZNuRe %* | 2-433 2-068 1-685 1-458 282 1115 1042 0953 0937 0921
= 0733, (bt s - T
i i
2¢:Rel/® J {a) ]19 02 72 10 3776 2378 15-45 726 4592
crRe L by | 9380 5688 2994 18:92 12:45 6264 4:592
e e (@) 2-474 2-106 1720 1-491 1314 1070 0-965
INuRe 4 () 5412 4-598 3739 3234 2-846 3340
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F1G. 7. Representative temperature profiles for the
uniform heat flux case (o = 0-733).

problems may be usefully applied to a wide
range of problems in both free and combined
free and forced convection. Only a small number
of terms need be retained in the asymptotic
series in order to give a good approximation
to the accurate solutions as derived by purely
numerical methods of the equations of motion
and energy, and the effect of variation in the
important parameters of the problems, for
example Prandtl number, or the quantity G,/ Re?,
are more clearly seen and more easily dealt with
than in the direct numerical approach. The
limitations of the method lie of course in its
requirement of similarity solutions, and its
increasing inaccuracy for decreasing Prandtl
number, as mentioned in Section 1, but never-
theless its application in free convection pro-
blems requiring theoretical solutions of a
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moderate degree of accuracy, say error < 10
per cent, could be wide.
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Résumé—Une technique d’approximation largement utilisée par Meksyn pour établir des solutions en
développement asymptotique aux problémes de couche limite est étudiée ici, en écoulement de con-
vection naturelle et appliquée au probleme classique de la convection naturelle sur une plaque verticale
uniformément chauffée dans un fluide au repos a infini, ainsi qu’au probléme moins classique de
convection naturelle combinée 4 la convection forcée sur une plaque verticale dans un fluide ayant une
vitesse verticale au loin de la plaque. On trouve que dans le fluide considéré les trois premiers termes
de la série asymptotique fournissent une bonne approximation pour les résultats connus et puisque
dans ce cas le probléme de calcul essentiel est de trouver les plus petites racines d’une équationd u 4°
ordre dans laquelle le nombre de Prandtl apparait comme paramétre la méthode est bien adaptée et
d’application plus générale que celle utilisée par d’autres auteurs dans ces problémes.

H.M.—3X
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D’autres questions de convection naturelle ou de combinaison convection naturelle et forcée dans
lesquelles des transformations semblables peuvent étre utilisées sont justiciables de la méme technique.

Zusammenfassung-—Ein von Meksyn verwendetes Niherungsverfahren zur Ermittlung von Ldsungen
fiir Stromungsprobleme in Grenzschichten in Form asymptotischer Erweiterungen wird aul freie
Konvektionsstrome ausgedehnt und auf das klassische Problem der freien Konvektion an einer
gleichmaéssig beheizten senkrechten Wand in sonst ruhendem Medium angewandt. Daneben werden
auch die weniger bekannten Probleme der kombinierten freien und erzwungenen Konvektion an einer
senkrechten Wand in einem Medium mit Vertikalgeschwindigkeit in grossem Abstand von der Wand
behandelt. In den erwdhnten Fillen zeigt sich, dass die ersten drei Glieder der asymptotischen Reihe
eine gute Naherung fiir bekannte Resultate darstelien. Da hierbei das wesentliche Berechnungsproblem
im Auffinden der kleinsten Wurzel einer Reihengleichung liegt, in der die Prandtlzahl als Parameter
vorkommt, ist die Methode leichter zu handhaben und von allgemeinerer Verwendbarkeit als jene
Verfahren fritherer Bearbeiter dieser Probleme. Andere Erscheinungen der freien Konvektion oder der
kombinierten freien und erzwungenen Konvektion, in welcher Ahnlichkeitstransformationen ver-
wendet werden konnen, sind unmittelbar der Methode zuginglich.

Anseramua—I1Ipudmikernas Merojlika, WHPOK0 UpUMeHAeMasd MeRCHHBIM LT Haxomge-
HHS PeLIeHUs 3a0ay 0 TEUSHUH B NOPadM4HbIX ¢ 105X B BUAE ACHMIITOTHUYLCKUNX, PanIoikenit.
pacripocTpaneHa Ha TeYeHUsl TP CBOGOJHON KOUBERIMN M TPUMEHEHA B 1IaCCHICeHILS
3agadax 0 cBOOOJHON KONBERIMIL Y PABHOMEPTHO NAPeBacMoil BepTHRQUILHOI Tl B
RUJKOCTH, & TaKHKe B APYIUX MEHee U3BCCTHBIX 3a,{a4aX 0 COBMECTHOH CBOOOANNT WoH eIy
¥ BePTUKANBHON CTEHKM B H{HIKOCTH, HMEIOMEH BePTHRAILHYIO CKOPOCTH Ha DOJILIHOM it~
CTOSTHUI OT CTEHKM. YCTAHOBIEHO, Wro B PACCMaTPUBACMBIX 3Q1A4aX (1epBble FPU YiaeH:
ACHUMIITOTHYECHOTO PALA JAAI0T XOPOUIee NPUOIIKEHNE K HARCCTHBIM Pe3VIILTATAN , B TaK Wik
B ATOM CIYyYae 3a7a4a BBRUHCICHIA 3akII0HacTeil B HAXOMIENNH HaUMeHLuero kopns
YPABHEHUA YETBEPTOM CTEIEHI, B KOTOPOM YMCI0 JIpabriis 1PeActaBiieno B B HapameTp.
HTOT METOJ HBIAAETCH MeHee TPYAVCMENM I 0Je0 Y IHHBCPCAILULIM , 4¢M MeTOALL, HPULECHAC bis
APYTUMH aBTOPAMH [JIA pemeHns Mo 00HbIN saz1av. Jdpyrue sajadn o ¢RoBOIHOI KoHBRILNY
WIN 0 COBMECTHO ¢BOGOIHOM U BLIHY A CHHOI KOHBERIMY, B KOTOPBIX MOUVT GLITH HPHMCTIeNH
1M0F00Hbe IPeOOPAsOBAUNA , IO IHIOTCS PDEIICHIID HO TAKOH 710 MeTO/ e,



