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Abstract-An approximation technique, widely used by Meksyn for finding solutions in terms of 
asymptotic expansions to problems of flow in boundary layers, is extended to free convection flows, 
and applied to the classical problem of free convection at a uniformly heated vertical wall in fluid 
otherwise at rest, and to the rather less known problems of combined free and forced convection at a 
vertical wall in a fluid having a vertical velocity at a large distance from the wall. It is found that, in 
the problems considered, the first three terms of the asymptotic series provide a good approximation 
to known results, and since in this case the essential computational problem is that of finding the least 
root of a quartic equation in which the F’randtl number appears as a parameter, the method is a good 
deal more easy to use and of more general application than those used by previous workers on these 
problems. Other problems of free convection, or combined free and forced convection, in which 

similarity transformations may be used are at once amenable to the same technique. 

NOMENCLATURE 

co-ordinates along and normal to the 
wall; 
similarity co-ordinates; 
vertical and horizontal velocity com- 
ponents ; 
absolute temperature; 
stream function; 
non-dimensionalized temperature in 
similarity co-ordinates; 
non-dimensionalized stream function 
in similarity co-ordinates ; 
acceleration due to gravity; 
kinematic viscosity; 
coefficient of thermal expansion; 
thermal conductivity; 
Prandtl number ; 
temperature of ambient fluid; 
temperature of wall; 
temperature difference between wall 
and ambient fluid; 
mainstream velocity; 
Nusselt number; 
Grashof number ; 
Reynolds number. 

* Lecturer in Applied Mathematics, 

INTRODUCTION 

THE problem of free convection at a heated 
vertical wall in a fluid otherwise at rest has 
stimulated a good deal of work, both experi- 
mental and theoretical, since the early papers of 
Schmidt and Beckmann [I]. Extensive discussion 
of the wide physical importance of this type of 
problem appears elsewhere, for example Ostrach 
[2], and is therefore not reproduced here. 
Notable contributions towards a theoretical 
understanding of the problem have come from 
Saunders [3], Schuh [4], Ostrach [2], Sparrow 
and Gregg [5] and Reeves and Kippenham [6], 
whilst Lorenz [7], Eckert and Soehngen [8] and 
Scherberg [9] are amongst those who have 
carried out detailed experimental work. All 
analytical approaches have been based on 
similarity transformations of the equations of 
motion and energy, as have most purely 
numerical approaches, and the process of solu- 
tion has usually been rather tedious. 

The problem of convection in a boundary 
layer at a heated vertical wall in a fluid which 
has a vertical velocity at a large distance from 
the wall has received much less attention how- 
ever. The most important theoretical contribution 
to this problem of combined free and forced 
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convection has come from Sparro-N, Eichhorn 
and Gregg [IO], and we follow their precedent 
here in seeking similarity solutions of the 
equations of motion and energy. The existence 
of similarity solutions depends on a relationship 
between the variation of wall temperature and of 
free stream velocity, thus limiting the range of 
problems covered by the analysis, and in fact 
excluding the case of uniform wall temperature 
and uniform stream velocity. This particular 
case has, however, received some attention in the 
past, notably from Tanaev [ll], Acrivos [12] 
and Sparrow and Gregg [13]. In this paper a 
method of asymptotic expansion, widely 
developed by Meksyn [14], and fully described 
and discussed by him, is used to find approximate 
solutions to two problems of combined free and 
forced convection, and to the classical problem 
of pure free convection at a uniformly heated 
vertical wall. This latter problem provides a 
useful vehicle for the development of the tech- 
nique, and also for the assessment of its accuracy. 

1. THE EQUATIONS OF MOTION AND 

ENERGY 

The equations defining the problem are the 
equation of motion in the .x-direction, .Y being 
measured vertically along the wall from the 
bottom edge, which with the usual boundary 
layer approximation is 

(I.11 

where To L: To(s) is the temperature of the fluid 
at height x at a large distance from the wall : the 
equation of heat transfer, again with the usual 
boundary-layer simplifications 

and the equation of continuity 

(1.2) 

(1.3) 

As is customary in boundary-layer theory WC 
replace the pressure gradient in (1.1) by its value 
outside the layer: and neglect the variation of p. 
Thus we have 

and we can rewrite (1. I ) in the form 

We w)ish to examine the p,)ssibility of finding 
similarity solutions to (1.2). ( I .3) and (1.41, and 
is is convenient to introduce a stream function 
C/,(X, y); such that 

and then make a transformation of variablus of 
the form 

where G(x) and H(x) are functions of x only. and 
T(Ax) is the temperature difference between the 
heated surface and the fluid at a large distance 
from the surface at the given value of X. The form 
of the functions G(x), H(s), ST(x) in order that 
equations (I .2)--( 1.4) should become ordinary 
differential equations in 17 is readily found (set, 
for example, Yang [I 5]), and in particular the 
only functions AT(x) admitting of a similarity 
solution are of the form U(s) A.P, and BP. 
In the case AT(x) K h-m we must have li,, z .P. 
where 2n I -: IV, and in the case L?X(X) x P’ 
we must have U, K e~~.~. Thus the existence of 
similarity solutions of the equations in the cast 
of combined forced and free convection 14. 
dependent on a quite intimate relationship 
between the forms of variation of the mainstream 
velocity and the temperature difference, and the 
number of configurations which can be investi- 
gated by this method is thereby limited. However. 
a number of interesting cases are accessible, and 
some of these we consider later. 

2. THE CONSTANT WALL ‘TEMPERATURE 

PROBLEM WITH NO MAINSTREAM VELOCITY 

In order to make a comparison with known 
results it is convenient to consider first the 
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particular case in which AT(x) is constant and 
U,(x) is zero. As mentioned earlier, this problem 
has been extensively studied, both theoretically 
and experimentally, and so provides a useful 
test of the accuracy of the method. 

Following Schmidt and Beckmann [ 1 ] we 
write 

rl’ -- 
C 1 

@AT If4 Y _ Ay 
x1/4 $14 

4(x, y) = 4v Ax3’“f(7). T(x, y) - To = ATF(q) 

(2.1) 

and (1.1) and (1.2) simplify to 

f “’ + 3ff” - 2f ‘2 + F = 0 (2.2) 

F” $ 3afF’ = 0. (2.3) 

In order to obtain solutions of (2.2) and (2.3) 
we make use of the fact thatf” and F’ are large 
only in a narrow region close to the wall; we can 
therefore seek asymptotic solutions of the equa- 
tions in order to employ the boundary conditions 
at infinity. To use the boundary conditions at 
7 = 0 we first assume solutions for f and F in 
the form 

.f= %wI~. F=r&-wr. (2.4) 
r=O 

Then the boundary conditions f =f' = 0, 
F= 1 atv=Oshowthat 

a, = a, = 0, cto= 1. (2.5) 

Hence 

r=2 1 

If we substitute these expressions (2.6) in (2.2) 
and (2.3) we find that 

03 

C ar r(r - l)(r - 2) 7r-3 +3%&L&- 1) 
3 2 2 

1 
+ 

1 = 
r1O 6a, 0, a3= 

--. 
6 

2cc, = 0. a2 = 0. 

rll 
24a, + al = 0, al = - 24a4. 

6~3 = 0, a3 = 0. 

f 
6Oa, + 6az - 8az + a2 = 0, a5 = 3: a$ 

7= i 1 
12a, + 3aazal = 0, a4 = - -- 

4 
u a2a, 

i = 6a azap 

i 

12Oa, + a3 = 0, a, = 0. 
T3 3 

20a, + 3a a3al = 0, cc5 = - 5a a4, etc. 

So we can write 

f=a2T2-iq3 + a4T4 + $a:T5 1 

F= 1 -24a,T+6aa2a4T4- lua4T5 

12 
+ - oaiv6 

5 
. . . 

(2.9) 

where all the coefficients may be expressed in 
terms of the two constants a, and a4 which are 
found by using the boundary conditions at 
infinity. We substitute in (2.2) and (2.3) the above 
expressions for f,f' and F in order to obtain 
linear equations forf” and F’; writing w and p 
for the series expressions for f and Fin (2.9) we 
have 

f”’ f 3&f = 2w’2 - p (2.10) 

F”+3awP’==O (2.11) 

17~-2 - 2 (g ar r 77~-1)2 + 1 + 5 @,. rlr = 0 (2.7) which may be integrated at once to give 
? 1 

z ar r(r - 1) qr-m2 + 3a 2 ar yr 5 c+ r or-l = 0 
f”= exp [- 3J"471)1 

2 2 

(2.8) 
[.I; exp [3J"+1)1 (2~'~ - P) 4 + Cl 

whence, equating to zero the coefficients of 
F'= D exp [- 3aJw(77)] (2.12) 

corresponding powers of 7 where C and D are constants, 
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TO complete the solution we have to evaluate 
the integrals 

1” = j’ exp I-~~ 3Jw(rl)] +(rl) d7/. 

F -~ 1 -!- DJ’ exp [- 3~]0~(17)] d_ri (2.13) 

where 

(6(~) .== ];I1 exp [3 J’cLJ(T)] (20~‘~ -~ p) d7 + c‘. (2.14) 

Integrating (2.9) term by term we have 

m--iap4(2/l T&)?id+. .==T,say (2.15) 

and we can now replace 7 by 7 as the independent 
variable in the expression (2.13) forf’. viz. 

,f” c= J’ emT 4(~) dq == J’ e-l $(T) ;‘, d7. (2.16) 

Since T(Y) starts with q3, when we express 71 in 
terms of 7 we can write 

+ ___+: 
?/ Z Y 

,,,- , 117 + 1 
,)A,':3 (?a 1) (2.17) 

which is valid for sufficiently small values of T. 
Thus 

dT 1: 5 
111 ~ II 

; A,, +‘:3 O)L--~) d7 

from which it follows that 

(2.18) 

the first integral being taken once round a cir- 
cuit containing 7 =: 0 in the q-plane, and the 
second integral being taken three times round a 
circuit containing T m: 0 in the T-plane. 

It follows at once that A, is the coefficient of 
7 1 in the expansion of -r-1/8 (m-1-l) in ascending 

powers of q; if we write jw(T) dq = y3 ,)Z,,C,, ~‘l 

=-~ 7, we have 

whence An, is the coefficient of 71n in the expres- 
sion (c, ~- c,~ + . . .)-1’3(mi~1). 

In fact we have 

so A,,, is the coefficient of 7)“’ in the expression 

We consider next the integral solution thy 
/“(y)> given by 

1’ : ,(_ exp ]--- 3 [c~J(~I I] d,(rl) dq. (2.13) 

Transforming to the new variable 7 we have 

and if we now let 

(7.X! 

where the expansion starts with 7 -Z.:S because ?: 
starts with G13, we find. by a procedure similar 
to that above, that 

where the first integral is taken three times round 
a circuit in the T-plane containing 7 0, and the 
second integral is taken once round a circuit in 
the 7)-plane containing 11 = 0. Hence it follows 
that & is equal to l/3 of the coefficient of 7, ’ 
in the expansion in ascending powers of 7, of the 
expression +(T) T l’B(nz-.l), i.e. 1.13 of the coefh- 
cient of vm in the expression 

(L.o CL 71 m;- CZ 92 + , . .)-1.3i”‘ ‘J (ho j- hL ‘, - 

h, 7)‘L Il. 

The coefficients h,, are most easily found by 
using (2.12), viz. f1’(~) -:m e. 7 +(T), and substitut- 
ing for ,f”‘, e -T and d(7) from (2.9), (2.15)> and 
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(2.23) respectively. Then the equating of coeffi- 
cients of powers of 77 gives the b, in terms of a2 
and a4. In fact the substitution gives 

2a, - 77 + 12a,~2-t~a~~3 + . . . 

=b,+b,rl+bzT2+. . . (2.25) 

where 

1 3 1 
r=a2T 3-sq4+5a4y5+60a:7f+...(2.15) 

Thus 

bo=&,b,= - I, b,= 12u,, b,=ia$ 

b, = - ia2, etc. 

and dm is l/3 of the coefficient of rim in the 
expression 

i 
a2 -iq+ia4s2+... 

1 

-113 (m+l) 

(2a2 - 7 + 12u, v2 + . . .) (2.26) 

From (2.23) and (2.24) we obtain 

s m e+ d(q) dv = 5 d, I’ 
0 m=O 

and to find the value of the integral from 0 to T 
we use the incomplete gamma function. 

The actual values of the first few coefficients 
of the Am and drfi series of (2.17) and (2.23) are as 
follows. 

A, = a;113 , A, = k aT5j3, 1 

6160 1 

I 

h (2.28) 

+ 1944 (Gp etc* 

do = ia23, 
dI 

5 
= - -a;213 ’ 18 

d2 
5 1 

= a,1 EaJ --32a, 

1 
d, =3a,4/3 

79 77 a4 
%a$ + 3o a, 

91 

81 

----I 1 

(8a2)2 

. (2.28) 

127 a$ 49 a4 
@2-15~+733 

55 1 
486 (8a2)3 1 ’ (2.29) 

The integral 

F = 1 + D f exp [- 3aJw(y)] (2.13) 

may be evaluated by a similar procedure, leading 
to a second equation, from the boundary con- 
dition on F at co, for the unknown parameters 
a, and a4. Transforming to the new variable T, 
as above, we have 

F(v) = 1 + D s e-ur zy dT, 

whence, writing 

(2.30) 

9zg Am ___ T1/3 (,m+l) 

m=O m + 1 
> 

where the A, are given in (2.28) above, we have 

F(a)= 1 + D; ;A,F o-1/3 (m+l)_ 

(2.31) 

The value of D is obtainable from the condition 
that F’ = -24a, at 77 = 0, hence D = -24a,, 
and the value of F at an interior point of the 
range is given by the incomplete gamma function. 

The conditions F = 0 =f’ at 17 = cc now 
give us a pair of algebraic equations from which 
to determine a, and a4. In the case where the 
series (2.27) and (2.31) are divergent we may, as 
Meksyn [ 141 has pointed out, make them formally 
convergent by introducing an arbitrary small 
parameter E, and writing in (2.23) and (2.30) 
exp (- TE-~) and exp (- CJTE-~), instead of eeT 
and e-UT respectively. The expansions (2.27) and 



(2.31) are then divergent for t 1. but can be f 
summed by applying Euler’s transformation to 

2: 12r I‘( / I ) 0. 2) 17 r- :i 
i 

the parameter 6. 
i \; urrj !: &./,(I ! jr/’ 2 ‘7 ?(~N~/.?!’ Ii2 

3. COMBINED FREE AND FORCED C’OR- - (2 -i !\) .\ y (ly ,]i iJ i J,(,i 

VECTION: CONSTANT WALL TEMPERATURE 
/ 

We next consider the problem of li-ec con- 2 i_ $7 ;. Ei 
vection at a vertical wall in the presence of a 

2 (ly ,.(,. I ) ‘1’ _ LIP ‘/’ 2: ‘(, I’), ’ 
1 9 1 

vertical mainstream velocity : the differcncc :I 3 7 ) 

between wall temperature and tempt,ature of writinF 
the ambient fluid being constant, and the main- 

.\ 4gPt~ I ? *,I 
stream velocity varying as x1’2 in accordance with 0’” ! : ;+ ) 

the conditions of Section 1. Writing IT(x) 
T, T,, and supposing and equating to zero thci coetficicnts of var~~bua 

c ‘0 U,y’, 2 (3.1) 
powers of 17 in (3.6) and (3.7, 

where TI is the wall temperature and U a con- 
stant, we make the transformations 7, ” 

The assumption that ,f’ and F are functions of 7: 
only then leads us to the equations 

fi“’ I- itrf].“ 0. (3.4) 

The coeficient of F‘ in equation (3.3). which 
measures the relative importance of the fret 
convection, is effectively the ratio of a Grashof 
number to square of Reynolds number. 

In finding solutions of the equations (3.3) and 
(3.4) we follow fairly closely the working of 
Section 2. Assuming a series solution forfand IqY: 
and applying the boundary conditions at v : 0: 

i.e. _f =- f’ -~~ 0. F --: 1 ; we find 

Substituting the expressions (3.5) into equa- 
tions (3.3) and (3.4) we have 
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Thus we can write 

3(2 + A) 12a 
--ua4r15+5hIx,2Y+. . . 5h J 

whence, substituting in (3.3) and (3.4) for f, f 
and F, and writing &II and p respectively for the 
series representations (2.5) off’ and F, we find 

f”’ + 367’ = 26’2 - 2 - hp (3.10) 

F” t_ 3aaF’ = 0 

which may be integrated to give 

f” = w [- 3J3(dl {fo" ev [3_f4dl 
(2&P - 2- Xp)dT + 

F’ = D exp [- 3uJS(v)] 

where C and D are constants. 

(3.11) 

C> 

(3.12) 

To complete the solution we must now evaluate 
the integrals 

f’ = .I” exp [-- 319(71) &I 461) drl, 
F = 1 + D j” exp [- 3uJG(77) dq] d7 (3.13) 

where we have written 

9(y) = S exp [3.PX7) dql 
(2&P - 2 - hp) dV + C. (3.14) 

The series representation ~$7) for f’ given by 
(3.9) may be integrated term by term to give 

3S~(~)d?-a,~3-~~~~4+~a4~5+~o~~~” 

-+W4(~+&)7? +. . . = 7, say (3.15) 

and it is now possible to replace 7 by T as the 
independent variable in the expression (3.13) 
forf’, viz. 

f’ = e-7 $($dT = J e-7 4(~)2 dT. (3.16) 

For small values of T we can express 17 as a power 
series in 7, 

where the coefficient A, is the coefficient of 7m 
in the expression 

[ 

2+h 3 1 
a”--_s 77 +-W2 + 60~;+ 5 

Moreover, if 

Hrl) G06n ?, and +(T) = r-2!3 g drfi +I3 
m=O 

(3.18) 

it follows, as in Section 2, that the coefficient 
dm is equal to l/3 of the coefficient of qm in the 
expression 

2+h 3 1 
a2 - --17 +jU4q2+jgjaiT3 8 

+ . . .)p3(m+l) (b, + b, 7] + b2 7j2 + . . .) 

and we can thus express the integral (2.16) in 
the form of a series of gamma functions. 

The coefficients b, are obtained from the 
equation 

f “ = e-T (6(q) (3.12) 

i.e. b,, + b, r] + . . . = G” er 

= 24z2-(2+h)7j+ 12a47j2+~a~~” 

-6a2a4(f+F315 +. . .]c. 

e7 = 1 + a2 v3 - 
3 

q4 + 5a4T5 

31 
+,a$?+..., 

so it follows that 



The coefficients A,,, and d,,, of (3.17) and (3.18) 
may now be written down as follows, 

; (3.21) 

91(2+h)” ; 

81 (3a,)” ’ etc* i 1 

The integral (3.16) may now bc expressed as a 
series of gamma functions as follows. 

(3.22) 

and in the case of the second integral of‘ (3.13). 
namely 

F I +- D j exp [ 3aj&(v)] d+ 

we again change the variable to 7, and write 

whence, writing 

where the A,,, are given in (j.21)) above. UC* hail’ 

The condition on k”(7)) at 7~ 0 dcducibk t‘rorii 
equation (3.9), namely F“(0) 24u ,/A. mi’an,l 
that we have I> 24n,: A: rhc conditions 
F‘ 0, /’ I at ‘, Y lhcn pro\idc Iti 1.~ 
equations from which to determine (I, and n, 

In ihc case in which X is large, \\,hich nf~ni 
that the natural convection is more important 
than the forced convection, it is convenient to 
use a different transformation of variable\. 
Instead of (3.2) we write 

and in this case the equations of momentum and 
energy become 

so that p 4/h, then all the analysis above 
applies, provided that we i\,r.ite i/2 /I i !-PI- 

2 -I- A, and remove the factor ii;\ from the CL,. 
However the boundary condition at 7 on I 

is no\v changed somewhat. for we have, :*I -l 
a&/?J cr.\-1 12. 

Thus 
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i.e. 
2 EgB(T1 - To)1 112 x1/2 f' = ~,$I2 (3.29) 

and hence 
u 

.f’ = ggjqTl _ T,)]1,2 = UWP. P-30) 

The condition at cc on F is of course F = 0 as 
above. 

4. COMBINED FREE AND FORCED TRANSFER: 

UNIFORM HEAT FLUX 

The rate at which heat is transmitted from the 
wall to the fluid is, according to Fourier’s law, 

proportional to T 
( 1 Q 1/=0’ 

By uniform heat flux 

we mean that this rate of heat transfer is inde- 
pendent of x, and in order that this should be 
so we require that AT(X) cc x1f5 and U, cc x3j5. 
Again, as in Section 3, we choose two separate 
similarity transformations, according as the 
forced convection or the free convection is 
regarded as dominant. In the former case we 
write 

T(x, u) - To 
45,~) = TV-- (4.1) 

1 0 

which gives equations 

(4.2) 

F” + o(4fF' -f'F) = 0. (4.3) 

We proceed with the solutions of equations 
(4.2) and (4.3) in the manner developed in 
Section 2, and eventually express both f' and F 
as a series of gamma functions, viz. 

F = 1 + : A, I',., CT -1/3(m+l) 

m=O 

(4.5) 

where ~(7) is defined in a similar manner to 
that in Section 3. 

In this case the d, and the A, are as follows. 

35(3 + h)2 _- 
$- 81.128a: 

-l/3 

d,=-&(3-h) 

]_ l(4.7) 

d3 = ca2)-4’3 l<a$ 

where 

and the conditions F( co) = 0, f’( co) = 1 provide 
two equations for a, and a& 

If, on the other hand, the free convection is to 
be regarded as dominant, an appropriate trans- 
formation of variables is 

5. RESULTS AND DISCUSSIONS 

Some numerical results based on the analysis 
of Sections 2, 3 and 4 have been computed on 
the University of Leeds Pegasus computer, and 
a selection of these results is presented here. In 
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all cases the computations have been based on 
the first three terms of the appropriate gamma 
function expansion for the temperature and 
stream function. Numerical results for the case 
of free convection at a vertical plate at uniform 
temperature are summarized in Figs. 1 and 2; 

2 

FE. I. Representative velocity profiles for varying 
values of CT in the pure free convection case. 

FIG. 2. Representative temperature profiles for vary- 
ing values of 0 in the pure free convection case. 

and a direct comparison between the results 
obtained above for CT := 0.733, and those 
obtained by Schmidt and Beckmann [ 11, Saunders 
[3] and Squire 1161, illustrated in Fig. 3, sho\+,s 

r 

_-J-__-___-_ __-.___ ..I_ 

FIG. -3. Comparison of the velocity prolile obtained 
in this paper with those obtained by earlier worker\ 

(0 0,733). 

an agreement good enough to provide con- 
fidence in the accuracy of the approximation (at 
least for values of g not too small compared with 
unity). 

The rate of heat transfer from the plate is 
given by 

which, using equations (2.1 j and the numercial 
result obtained for F’(0) is. for CT = 0.733. 

and hence the mean Nusselt number for a plate 
of height I is 

this value differs from that obtained numerically 
by Ostrach [2] by a margin of about 4 per cent. 
and in Table 1 is presented a comparison 
between our results and those of Ostrach for 
various values of C. 
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Table 1. Values of’ temperature gradient and Nusselt number at the vertical wall, 
.fbr the case of constant temperature 

~~~ ~~____ ____-___ _-____ ~~_~ ~__..~___~ ~~ ~~_____ 
I 

0 I 0.01 0.733 7 10 100 1000 

Our--F’(O) 0,051 0.529 1.168 I.300 2.346 3.941 
Ostrach’s--H’(O) 0.081 0.508 - 1.169 2.191 3.966 

Nu gP(T, - To) II4 ) 
Y2 1 I 0.485 0.499 I.100 I.227 2.200 3.60 

I 

The measure of agreement obtained between 
the results presented here, and numerical results 
obtained by other investigators suggests that 
this method of approximation is a very useful 
one in free convection problems. In our case, 
where three terms of the series expansions are 
used, the essential computational problem con- 
sists of finding the smallest solution of a quantic 
equation in which the Prandtl number appears as 
a parameter. It is thus a matter of little labour 
to find solutions for any u, but it should be noted 
that the method does not work at all well for 
very small Prandtl number because of the 
presence of factors of the form ~.-~/~(m+l) (m an 
integer) in the expansions for the temperature 
field. Physically this means that the temperature 
boundary layer is much thicker than the velocity 
boundary layer, and so the polynomial expres- 
sion for the velocity is used in the equations over 
a much greater range of 7 than that for which it 
is an accurate approximation. 

Numerical results for the case of combined 
free and forced convection at a vertical wall 
kept at uniform temperature are summarized in 
Figs. 4 and 5. Again the essential computational 
problem is the finding of the first root of a 
quartic equation, which contains as parameters 
the Prandtl number u and the quantity p (or h), 
which is effectively of the form Re2/Gr, where 
Re is the Reynolds number, and Gr the Grashof 
number appropriate to the problem. 

The shear stress at the wall is 

and the heat transfer 

it is convenient to measure these in terms of 
coefficients defined as follows, the Nusselt 
number 

and the friction coefficient 

v au 
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FIG. 4. Representative velocity profiles for the uni- 
form wall temperature case (0 = 0,733). 
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FIG. 5. Representative temperature profiles for the 
uniform wall tempcratiire case ( n-- 0,733). 

Variations of these coefficients for varying 
Gr/Re2 are shown in Table 2, all the figures being 
based on a Prandtl number of 0.733. In order to 
facilitate comparison with the results of Sparrow. 
Eichhorn and Gregg [13], the quantities tabu- 
lated are ZC~R&!~ and 2NuRe -I 2. Agreement is 
on the whole very good, but our values of heat 
transfer are systematically higher by some 7 per 
cent, and for small values of Gr/ Rt? the difference 
in the skin friction figures runs to 12-14 per cent. 

Some results have also been prepared for the 
uniform heat flux case, this time for both CT ---- 
O-733 and u -= 7. These results are presented in 
Figs. 6 and 7 and Table 3. and again agreement 

with Sparrow, Eichhorn and Gregg is very good 
where a direct comparison is possible. 

In conclusion, it seems apparent that the 
symp~otjc methods developed by Meksyn and 
used by him in a variety of boundary-layer 



AN APPROXIMATION TECHNIQUE FOR NATURAL CONVECTION 

FIG. 7. Representative temperature profiles for the 
uniform heat flux case (u = 0.733). 

problems may be usefully applied to a wide 
range of problems in both free and combined 
free and forced convection. Only a small number 
of terms need be retained in the asymptotic 
series in order to give a good approximation 
to the accurate solutions as derived by purely 
numerical methods of the equations of motion 
and energy, and the effect of variation in the 
important parameters of the problems, for 
example Prandtl number, or the quantity Gr/Re2, 
are more clearly seen and more easily dealt with 
than in the direct numerical approach. The 
limitations of the method lie of course in its 
requirement of similarity solutions, and its 
increasing inaccuracy for decreasing Prandtl 
number, as mentioned in Section 1, but never- 
theless its application in free convection pro- 
blems requiring theoretical solutions of a 

moderate degree of accuracy, say error < 10 
per cent, could be wide. 
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R&um&Une technique d’approximation largement utihsQ par Meksyn pour Ctablir des solutions en 
d&eloppement asymptotique aux problkmes de couche limite est Ctuditte ici, en koulement de con- 
vection naturelle et appliquke au probleme classique de la convection naturelle sur une plaque verticale 
uniformkment chauff&e dans un fluide au repos g l’infini, ainsi qu’au probltme moins classique de 
convection naturelle combin& ?I la convection for&e sur une plaque verticale dans un fluide ayant une 
vitesse verticale au loin de la plaque. On trouve que dans le fluide consid&C les trois premiers termes 
de la s&ie asymptotique fournissent une bonne approximation pour les rbultats connus et puisque 
dans ce cas le probBme de calcul essentiel est de trouver les plus petites racines d’une Bquationd u 4” 
ordre dans laquelle le nombre de Prandtl apparait comme parametre la mCthode est bien adaptCe et 
d’application plus g&n&ale que celle utilisee par d’autres auteurs dans ces problkmes. 

H.M.-3X 
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D’autres questions de convection naturelle ou de combinaison convection naturelle et for&e dans 
lesquelles des transformations semblables peuvent @tre utilisCes sont justiciables de la meme technique. 

Zusammenfassung--Ein von Meksyn verwendetes NBherungsverfahren zur Ermittltmg \on L~;sungcn 
fiir Strijmungsprobleme in Grenzschichten in Form asymptotischer Erweiterungen wird auf frcie 
Konvektionsstrijme ausgedehnt und auf das klassische Problem der freien Konvektion an einel 
gleichmkssig beheizten senkrechten Wand in sonst ruhendem Medium angewandt. Daneben werden 
such die weniger bekannten Probleme der kombinierten freien und erzwungenen Konvektion an einet 
senkrechten Wand in einem Medium mit Vertikalgeschwindigkeit in grossem Abstand van der Wand 
behandelt. In den erwahnten FIllen zeigt sich, dass die ersten drei Glieder der asymptotischen Reihc 
eine gute Ngherung fiir bekannte Resultate darstellen. Da hierbei das wesentliche Berechnungsproblem 
im Auffinden der kleinsten Wurzel einer Reihengleichung liegt, in der die Prandtlzahl als Parametcl 
vorkommt, ist die Methode leichter zu handhaben und van allgemeinerer Verwendbarkeil als jene 
Verfahren friiherer Bearbeiter dieser Probleme. Andere Erscheinungen der freien Konvektion oder der 
kombinierten freien und erzwungenen Konvektion. in welcher Ahnlichkeitstransformatinnen be?- 

wendet werden kiinnen. sind unmittelbar der Methode zug%nglich. 

JrO~O6Hr,I~ npeOlipa3OBaItJlH, rlO,~;I;JJOT~fJ pt~JiJf’llllK~ 110 ‘PRHOii ilit’ \I~‘TUI~lIl~;t’. 


